Exponential Functions Unit Day 4

Objectives:

Simple Interest
Compound Interest
Use Functions involving e

Wehrle 1

Compound Interest:

Compound Interest is interest paid on the initial investment, called principal, and on previously earned interest.

Interest paid only on principal is called <u>simple interest</u>.

Formulas:

t = time

Simple Interest: I = Prt Compound Interest: $A = P(1 + r/n)^{nt}$

Wehrle 2

What would "n" be if the interest was compounded:

annually?

n= 1

monthly?

N=12

quarterly?

N= 4

weekly? n=52

semi-annually?

n = 2

bi-monthly?

N=6

daily?

n = 365

You deposit \$4000 in an account that pays 2.92% interest. Find the balance after 1 year if the interest is compounded with the given $A = P(1 + \frac{\pi}{n})^n$ frequency. State the amount of interest earned.

a. Quarterly Balance: $A = 4000(1 + \frac{.0292}{4})^{4.1}$

Interest earned: \$118.09

b. Monthly Balance: $A = 4000 \left(1 + \frac{.0292}{12}\right)^{12 \cdot 1}$

Interest earned: \$ 118.38

c. Daily Balance: $A = 4000 \left(1 + \frac{.0292}{3.5}\right)^{365 \cdot 1}$

d. Semi-annually Balance:

Interest earned:

e. Simple interest Balance:

Interest earned:

i (imaginary number)-

$$e$$
 (the natural base)- E_{uler} 's #

Day 4 - Compound Interest and e Completed Notes

Simplify:

$$e^2 \cdot e^5 = e^7$$

$$\frac{12e^4}{3e^3} = 4e$$

$$(5e^{3x})^2 = 35e^{-6x}$$

$$= 35e^{-6x}$$

$$= 6x$$

$$\sqrt{4e^{12}}$$
 $\sqrt[3]{27e^{18x}}$

Wehrle

Continuously Compounded Interest

Formula: $A = Pe^{rt}$

You deposit \$4000 in an account that pays 6% annual interest compounded continuously. What is the balance after 1 year? How much interest has been earned?

\$1500 is deposited in an account that pays 3.45% interest annually. What is the balance after 2.5 years if..

a. interest is compounded quarterly?

$$A = P(1 + \frac{x}{x})^{x}$$

$$A = 1500(1 + \frac{.0345}{4})$$

$$A = 4 + \frac{1634.51}{4}$$

b. interest is compounded daily?

c. interest is compounded continuously?

$$A = Pert$$
(.0343(2.5))
 $A = 1500e$
 $A = 1635.12